Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Pharmacol ; 64(2): 205-214, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37794650

RESUMO

Various antidepressants have introduced in clinical practice for pain management, but it is important to understand how to properly use them. We therefore performed a systematic review and network meta-analysis to compare and rank the efficacy and safety of antidepressants for patients with chronic back pain. We identified eligible randomized controlled trials (RCTs) that investigated the efficacy and safety of antidepressants for chronic back pain from PubMed, Embase, the Cochrane Library, and ClinicalTrials.gov, searching from inception to May 2023. Six categories of antidepressants for the treatment of chronic back pain were included, and the surface under the cumulative ranking probabilities was applied to rank the treatment strategies. Overall, we selected 19 RCTs recruiting 2903 patients for the meta-analysis. Tricyclic antidepressants presented the best relative effects for relief in pain score (surface under the cumulative ranking, 84.4%). The results of pairwise comparison analyses found the use of serotonin-noradrenaline reuptake inhibitors (SNRIs) significantly reduced pain score and low disability score compared with placebo, irrespective of treatment duration. Noradrenaline-dopamine reuptake inhibitors (relative risk [RR], 2.80; 95% confidence interval [CI], 1.30-6.03; P = .008) and SNRIs (RR, 1.17; 95% CI, 1.07-1.27; P < .001) significantly increased the risk of adverse events. SNRIs were associated with an increased risk of withdrawal due to adverse events (RR, 2.37; 95% CI, 1.64-3.43; P < .001). This study found that antidepressants are more efficacious than placebos for treating chronic back pain, and tricyclic antidepressants are the most likely medications that lead to pain relief.


Assuntos
Antidepressivos Tricíclicos , Inibidores da Recaptação de Serotonina e Norepinefrina , Humanos , Antidepressivos Tricíclicos/efeitos adversos , Metanálise em Rede , Antidepressivos/efeitos adversos , Inibidores Seletivos de Recaptação de Serotonina , Norepinefrina , Dor/tratamento farmacológico
2.
Int J Biol Macromol ; 248: 125842, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37454996

RESUMO

The myosin motor protein myosin VI plays an essential role in mammalian spermatogenesis, however, the effects of myosin VI on male reproduction in Crustacea remain obscure. We identified the macromolecule es-Myosin VI in Eriocheir sinensis, and studied it by multiple methods. It co-localized with F-actin and was highly expressed in the testis. We interfered es-Myosin VI using dsRNA in vivo, an apparent decrease in spermatozoa count was detected. We also found that the MAPK signalling pathway was changed, subsequently causing disruption of intercellular junctions and damage to the functional hemolymph-testis barrier. We observed that luteinizing hormone receptor es-LHR was located within seminiferous tubules, which was different from the expression in mammals. Es-LHR could bind with es-Myosin VI in testis of E. sinensis, its localization was significantly altered when es-Myosin VI was deleted. Moreover, we obtained consistent results for the MAPK signalling pathway and spermatogenesis defects between the es-LHR and es-Myosin VI knockdown groups. In summary, our research demonstrated that knockdown of es-Myosin VI disturbed the intercellular junction and HTB function via the MAPK signalling pathway by changing the localization of es-LHR in the testis of E. sinensis, which was the potential reason for its negative impact on spermatogenesis.


Assuntos
Braquiúros , Testículo , Animais , Masculino , Testículo/metabolismo , Espermatogênese , Espermatozoides , Junções Intercelulares , Braquiúros/genética , Mamíferos
3.
Environ Pollut ; 331(Pt 2): 121952, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37270048

RESUMO

Recent findings found that TiO2 nanoparticles (TiO2-NPs) have male reproductive toxicity. However, few reports have studied the toxicity of TiO2-NPs in crustaceans. In this study, we first chose the freshwater crustacean Eriocheir sinensis (E. sinensis) to explore the male toxicity of TiO2-NP exposure and the underlying mechanisms. Three nm and 25 nm TiO2-NPs at a dose of 30 mg/kg bw induced apoptosis and damaged the integrity of the haemolymph-testis-barrier (HTB, a structure similar to the blood-testis-barrier) and the structure of the seminiferous tubule. The 3-nm TiO2-NPs caused more severe spermatogenesis dysfunction than the 25-nm TiO2-NPs. We initially confirmed that TiO2-NP exposure affected the expression patterns of adherens junctions (α-catenin and ß-catenin) and induced tubulin disorganization in the testis of E. sinensis. TiO2-NP exposure caused reactive oxygen species (ROS) generation and an imbalance of mTORC1-mTORC2 (mTORC1/rps6/Akt levels were increased, while mTORC2 activity was not changed). After using the ROS scavenger NAC to inhibit ROS generation, both the mTORC1-mTORC2 imbalance and alterations in AJs were rescued. More importantly, the mTORC1 inhibitor rapamycin abolished mTORC1/rps6/Akt hyperactivation and partially restored the alterations in AJs and tubulin. Collectively, the mTORC1-mTORC2 imbalance induced by TiO2-NPs was involved in the mechanism of AJ and HTB disruption, resulting in spermatogenesis in E. sinensis.


Assuntos
Nanopartículas , Testículo , Masculino , Humanos , Testículo/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tubulina (Proteína)/metabolismo , Junções Aderentes/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espermatogênese/fisiologia , Titânio/toxicidade , Titânio/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Nanopartículas/toxicidade , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo
4.
Cell Tissue Res ; 393(3): 559-575, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37328709

RESUMO

Mammalian target of rapamycin (mTOR) is a crucial signaling protein regulating a range of cellular events. Numerous studies have reported that the mTOR pathway is related to spermatogenesis in mammals. However, its functions and underlying mechanisms in crustaceans remain largely unknown. mTOR exists as two multimeric functional complexes termed mTOR complex 1 (mTORC1) and mTORC2. Herein, we first cloned ribosomal protein S6 (rpS6, a downstream molecule of mTORC1) and protein kinase C (PKC, a downstream effector of mTORC2) from the testis of Eriocheir sinensis. The dynamic localization of rpS6 and PKC suggested that both proteins may be essential for spermatogenesis. rpS6/PKC knockdown and Torin1 treatment led to defects in spermatogenesis, including germ cell loss, retention of mature sperm and empty lumen formation. In addition, the integrity of the testis barrier (similar to the blood-testis barrier in mammals) was disrupted in the rpS6/PKC knockdown and Torin1 treatment groups, accompanied by changing in expression and distribution of junction proteins. Further study demonstrated that these findings may result from the disorganization of filamentous actin (F-actin) networks, which were mediated by the expression of actin-related protein 3 (Arp3) rather than epidermal growth factor receptor pathway substrate 8 (Eps8). In summary, our study illustrated that mTORC1/rpS6 and mTORC2/PKC regulated spermatogenesis via Arp3-mediated actin microfilament organization in E. sinensis.


Assuntos
Sêmen , Transdução de Sinais , Animais , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Proteína 3 Relacionada a Actina/metabolismo , Sêmen/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Espermatogênese/fisiologia , Citoesqueleto de Actina/metabolismo , Barreira Hematotesticular/metabolismo , Mamíferos/metabolismo
5.
J Ginseng Res ; 47(3): 408-419, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37252276

RESUMO

Background: Ginsenoside compound K (CK), the main active metabolite in Panax ginseng, has shown good safety and bioavailability in clinical trials and exerts neuroprotective effects in cerebral ischemic stroke. However, its potential role in the prevention of cerebral ischemia/reperfusion (I/R) injury remains unclear. Our study aimed to investigate the molecular mechanism of ginsenoside CK against cerebral I/R injury. Methods: We used a combination of in vitro and in vivo models, including oxygen and glucose deprivation/reperfusion induced PC12 cell model and middle cerebral artery occlusion/reperfusion induced rat model, to mimic I/R injury. Intracellular oxygen consumption and extracellular acidification rate were analyzed by Seahorse multifunctional energy metabolism system; ATP production was detected by luciferase method. The number and size of mitochondria were analyzed by transmission electron microscopy and MitoTracker probe combined with confocal laser microscopy. The potential mechanisms of ginsenoside CK on mitochondrial dynamics and bioenergy were evaluated by RNA interference, pharmacological antagonism combined with co-immunoprecipitation analysis and phenotypic analysis. Results: Ginsenoside CK pretreatment could attenuate mitochondrial translocation of DRP1, mitophagy, mitochondrial apoptosis, and neuronal bioenergy imbalance against cerebral I/R injury in both in vitro and in vivo models. Our data also confirmed that ginsenoside CK administration could reduce the binding affinity of Mul1 and Mfn2 to inhibit the ubiquitination and degradation of Mfn2, thereby elevating the protein level of Mfn2 in cerebral I/R injury. Conclusion: These data provide evidence that ginsenoside CK may be a promising therapeutic agent against cerebral I/R injury via Mul1/Mfn2-mediated mitochondrial dynamics and bioenergy.

6.
Int J Biol Macromol ; 242(Pt 3): 124867, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37201886

RESUMO

ß-CATENIN is an evolutionarily conserved multifunctional molecule that maintains cell adhesion as a cell junction protein to safeguard the integrity of the mammalian blood-testes barrier, and also regulates cell proliferation and apoptosis as a key signaling molecule in the WNT/ß-CATENIN signaling pathway. In the crustacean Eriocheir sinensis, Es-ß-CATENIN has been shown to be involved in spermatogenesis, but the testes of E. sinensis have large and well-defined structural differences from those of mammals, and the impact of Es-ß-CATENIN in them is still unknown. In the present study, we found that Es-ß-CATENIN, Es-α-CATENIN and Es-ZO-1 interact differently in the testes of the crab compared to mammals. In addition, defective Es-ß-CATENIN resulted in increased Es-α-CATENIN protein expression levels, distorted and deformed F-ACTIN, and disturbed localization of Es-α-CATENIN and Es-ZO-1, leading to loss of hemolymph-testes barrier integrity and impaired sperm release. In addition to this, we also performed the first molecular cloning and bioinformatics analysis of Es-AXIN in the WNT/ß-CATENIN pathway to exclude the effect of the WNT/ß-CATENIN pathway on the cytoskeleton. In conclusion, Es-ß-CATENIN participates in maintaining the hemolymph-testes barrier in the spermatogenesis of E. sinensis.


Assuntos
Braquiúros , Testículo , Animais , Masculino , Testículo/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , alfa Catenina/metabolismo , Braquiúros/metabolismo , Hemolinfa/metabolismo , Sêmen/metabolismo , Espermatogênese , Citoesqueleto/metabolismo , Junções Intercelulares/metabolismo , Mamíferos/metabolismo
7.
Front Pharmacol ; 14: 1129817, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007037

RESUMO

Background: Respiratory diseases are common and frequent diseases. Due to the high pathogenicity and side effects of respiratory diseases, the discovery of new strategies for drug treatment is a hot area of research. Scutellaria baicalensis Georgi (SBG) has been used as a medicinal herb in China for over 2000 years. Baicalin (BA) is a flavonoid active ingredient extracted from SBG that BA has been found to exert various pharmacological effects against respiratory diseases. However, there is no comprehensive review of the mechanism of the effects of BA in treating respiratory diseases. This review aims to summarize the current pharmacokinetics of BA, baicalin-loaded nano-delivery system, and its molecular mechanisms and therapeutical effects for treating respiratory diseases. Method: This review reviewed databases such as PubMed, NCBI, and Web of Science from their inception to 13 December 2022, in which literature was related to "baicalin", "Scutellaria baicalensis Georgi", "COVID-19", "acute lung injury", "pulmonary arterial hypertension", "asthma", "chronic obstructive pulmonary disease", "pulmonary fibrosis", "lung cancer", "pharmacokinetics", "liposomes", "nano-emulsions", "micelles", "phospholipid complexes", "solid dispersions", "inclusion complexes", and other terms. Result: The pharmacokinetics of BA involves mainly gastrointestinal hydrolysis, the enteroglycoside cycle, multiple metabolic pathways, and excretion in bile and urine. Due to the poor bioavailability and solubility of BA, liposomes, nano-emulsions, micelles, phospholipid complexes, solid dispersions, and inclusion complexes of BA have been developed to improve its bioavailability, lung targeting, and solubility. BA exerts potent effects mainly by mediating upstream oxidative stress, inflammation, apoptosis, and immune response pathways. It regulates are the NF-κB, PI3K/AKT, TGF-ß/Smad, Nrf2/HO-1, and ERK/GSK3ß pathways. Conclusion: This review presents comprehensive information on BA about pharmacokinetics, baicalin-loaded nano-delivery system, and its therapeutic effects and potential pharmacological mechanisms in respiratory diseases. The available studies suggest that BA has excellent possible treatment of respiratory diseases and is worthy of further investigation and development.

8.
Phytomedicine ; 114: 154768, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36948143

RESUMO

BACKGROUND: Nicotinamide adenine dinucleotide (NAD+) metabolism is involved in the entire physiopathological process and is critical to human health. Long-term imbalance in NAD+ homeostasis is associated with various diseases, including non-alcoholic fatty liver disease, diabetes mellitus, cardiovascular diseases, neurodegenerative disorders, aging, and cancer, making it a potential target for effective therapeutic strategies. Currently, several natural products that target NAD+ metabolism have been widely reported to have significant therapeutic effects, but systematic summaries are lacking. PURPOSE: To summarize the latest findings on the prevention and treatment of various diseases through the regulation of NAD+ metabolism by various natural products in vivo and in vitro models, and evaluate the toxicities of the natural products. METHODS: PubMed, Web of Science, and ScienceDirect were searched using the keywords "natural products sources," "toxicology," "NAD+ clinical trials," and "NAD+," and/or paired with "natural products" and "diseases" for studies published within the last decade until January 2023. RESULTS: We found that the natural products mainly include phenols (curcumin, cyclocurcumin, 4-hydroxybenzyl alcohol, salvianolic acid B, pterostilbene, EGCG), flavonoids (pinostrobin, apigenin, acacetin, tilianin, kaempferol, quercetin, isoliquiritigenin, luteolin, silybin, hydroxysafflor yellow A, scutellarin), glycosides (salidroside), quinones (emodin, embelin, ß-LAPachone, shikonin), terpenoids (notoginsenoside R1, ginsenoside F2, ginsenoside Rd, ginsenoside Rb1, ginsenoside Rg3, thymoquinone, genipin), pyrazines (tetramethylpyrazine), alkaloids (evodiamine, berberine), and phenylpropanoids (ferulic acid). These natural products have antioxidant, energy-producing, anti-inflammatory, anti-apoptotic and anti-aging effects, which mainly influence the NAMPT/NAD+/SIRT, AMPK/SIRT1/PGC-1α, Nrf2/HO-1, PKCs/PARPs/NF-κB, and AMPK/Nrf2/mTOR signaling pathways, thereby regulating NAD+ metabolism to prevent and treat various diseases. These natural products have been shown to be safe, tolerable and have fewer adverse effects in various in vivo and in vitro studies and clinical trials. CONCLUSION: We evaluated the toxic effects of natural products and summarized the available clinical trials on NAD+ metabolism, as well as the recent advances in the therapeutic application of natural products targeting NAD+ metabolism, with the aim to provide new insights into the treatment of multiple disorders.


Assuntos
Produtos Biológicos , Humanos , Animais , NAD/metabolismo , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/metabolismo , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo
9.
Phytomedicine ; 112: 154707, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36805483

RESUMO

BACKGROUND: Qimai Feiluoping decoction (QM), a Traditional Chinese Medicine formula, has been included in rehabilitation program for functional disorders of discharged COVID-19 patients. QM has been proved to effectively improve the clinical symptoms and imaging signs of PF in COVID-19 convalescent patients. PURPOSE: This study to explore the pharmacological effect of QM against PF from the perspectives of imaging, pathological staining, and molecular mechanisms, and identify possible active components. METHODS: Micro-CT imaging and immunohistochemical staining were investigated to verify the therapeutic effect of QM in the bleomycin (BLM)-induced PF mouse model. The 4D-label-free proteomics analysis of lung tissues was then conducted to explore the novel mechanisms of QM against PF, which were further validated by a series of experiments. The possible components of QM in plasma and lung tissues were identified with UHPLC/IM-QTOF-MS analysis. RESULTS: The results from micro-CT imaging and pathological staining revealed that QM treatment can inhibit BLM-induced lung injury, extracellular matrix accumulation and TGF-ß expression in the mouse model with PF. The 4D-label-free proteomics analysis demonstrated that the partial subunit proteins of mitochondrial complex I and complex II might be potential targets of QM against PF. Furthermore, QM treatment can inhibit BLM-induced mitochondrial ROS content to promote ATP production and decrease oxidative stress injury in the mouse and cell models of PF, which was mediated by the inhibition of mitochondrial complex I. Finally, a total of 13 protype compounds and 15 metabolites from QM in plasma and lung tissues were identified by UHPLC/IM-QTOF-MS, and liquiritin and isoliquiritigenin from Glycyrrhizae radix et rhizoma could be possible active compounds against PF. CONCLUSION: It concludes that QM treatment could treat PF by inhibiting mitochondrial complex I-mediated mitochondrial oxidated stress injury, which could offer new insights into the pharmacological mechanisms of QM in the clinical application of PF patients.


Assuntos
COVID-19 , Fibrose Pulmonar , Camundongos , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Bleomicina/toxicidade , COVID-19/patologia , Pulmão/patologia , Estresse Oxidativo
10.
J Ethnopharmacol ; 306: 116143, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36632855

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Natural herbs are gradually gaining recognition for their efficacy and safety in preventing diabetes and improving quality of life. Morus alba L. is a plant widely grown in Asia and is a traditional Chinese herb with a long history of use. Furthermore, several parts of Morus alba L. have been found to have significant health benefits. In particular, mulberry (Morus alba L.) leaves (ML) have been shown in human and animal studies to be promising hypoglycemic agents that can reduce or prevent glucolipid metabolism disorders caused by imbalances in the gut microbiota, inflammation, and oxidative stress and have demonstrated significant improvements in glucose metabolism-related markers, effectively lowering blood glucose, and reducing hyperglycemia-induced target organ damage. AIM OF THE STUDY: This review briefly summarizes the methods for obtaining ML's bioactive components, elaborates on the clinical potential of the relevant components in managing type 2 diabetes mellitus (T2DM), and focuses on the therapeutic mechanisms of gut microbiota, inflammation, oxidative stress, and metabolism, to provide more inspiration and directions for future research in the field of traditional natural plants for the management of T2DM and its complications. MATERIALS AND METHODS: Research on ML and its bioactive components was mainly performed using electronic databases, including PubMed, Google Scholar, and ScienceNet, to ensure the review's quality. In addition, master's and doctoral theses and ancient documents were consulted. RESULTS: In clinical studies, we found that ML could effectively reduce blood glucose, glycated hemoglobin, and homeostasis model assessment of insulin resistance in T2DM patients. Furthermore, many in vitro and in vivo experiments have found that ML is involved in various pathways that regulate glucolipid metabolism and resist diabetes while alleviating liver and kidney damage. CONCLUSIONS: As a potential natural anti-diabetic phytomedicine, an in-depth study of ML can provide new ideas and valuable references for applying traditional Chinese medicine to treat T2DM. While continuously exploring its clinical efficacy and therapeutic mechanism, the extraction method should be optimized to improve the efficacy of the bioactive components. in addition, further research on the dose-response relationship of drugs to determine the effective dose range is required.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Morus , Animais , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glicemia/metabolismo , Qualidade de Vida , Extratos Vegetais/farmacologia , Inflamação/tratamento farmacológico , Folhas de Planta/metabolismo
11.
Tissue Cell ; 81: 102028, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36709695

RESUMO

Spermatogenesis is a complicated process that includes spermatogonia differentiation, spermatocytes meiosis, spermatids spermiogenesis and final release of spermatozoa. Actin-related protein 3 (Arp3) and epidermal growth factor receptor pathway substrate 8 (Eps8) are two actin binding proteins that regulate cell adhesion in seminiferous tubules during mammalian spermatogenesis. However, the functions of these two proteins during spermatogenesis in nonmammalian species, especially Crustacea, are still unknown. Here, we cloned es-Arp3 and es-Eps8 from the testis of Chinese mitten crab Eriocheir sinensis. es-Arp3 and es-Eps8 were located in spermatocytes, spermatids and spermatozoa. Knockdown of es-Arp3 and es-Eps8 in vivo caused morphological changes to seminiferous tubules including delayed spermatozoa release, shedding of germ cells and vacuoles. Filamentous-actin (F-actin) filaments network was disorganized due to deficiency of es-Arp3 and es-Eps8. Accompanying this, four junctional proteins (α-catenin, ß-catenin, pinin and ZO1) displayed abnormal expression levels as well as penetrating biotin signals in seminiferous tubules. We also used the Arp2/3 complex inhibitor CK666 to block es-Arp3 activity and supported es-Arp3 knockdown results. In summary, our study demonstrated for the first time that es-Arp3 and es-Eps8 are important for spermatogenesis via regulating microfilament-mediated cell adhesion in Eriocheir sinensis.


Assuntos
Barreira Hematotesticular , Espermatogênese , Animais , Masculino , Proteína 3 Relacionada a Actina/metabolismo , Barreira Hematotesticular/metabolismo , Espermatogênese/fisiologia , Testículo , Espermátides , Túbulos Seminíferos/metabolismo , Citoesqueleto de Actina/metabolismo , Proteínas dos Microfilamentos/metabolismo , Mamíferos/metabolismo
12.
J Ethnopharmacol ; 300: 115715, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36108895

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Panax ginseng C. A. Meyer (P. ginseng) is effective in the prevention and treatment of myocardial ischemia-reperfusion (I/R) injury. The mechanism by which P. ginseng exerts cardioprotective effects is complex. P. ginseng contains many pharmacologically active ingredients, such as molecular glycosides, polyphenols, and polysaccharides. P. ginseng and each of its active components can potentially act against myocardial I/R injury. Myocardial I/R was originally a treatment for myocardial ischemia, but it also induced irreversible damage, including oxygen-containing free radicals, calcium overload, energy metabolism disorder, mitochondrial dysfunction, inflammation, microvascular injury, autophagy, and apoptosis. AIM OF THE STUDY: This study aimed to clarify the protective effects of P. ginseng and its active ingredients against myocardial I/R injury, so as to provide experimental evidence and new insights for the research and application of P. ginseng in the field of myocardial I/R injury. MATERIALS AND METHODS: This review was based on a search of PubMed, NCBI, Embase, and Web of Science databases from their inception to February 21, 2022, using terms such as "ginseng," "ginsenosides," and "myocardial reperfusion injury." In this review, we first summarized the active ingredients of P. ginseng, including ginsenosides, ginseng polysaccharides, and phytosterols, as well as the pathophysiological mechanisms of myocardial I/R injury. Importantly, preclinical models with myocardial I/R injury and potential mechanisms of these active ingredients of P. ginseng for the prevention and treatment of myocardial disorders were generally summarized. RESULTS: P. ginseng and its active components can regulate oxidative stress related proteins, inflammatory cytokines, and apoptosis factors, while protecting the myocardium and preventing myocardial I/R injury. Therefore, P. ginseng can play a role in the prevention and treatment of myocardial I/R injury. CONCLUSIONS: P. ginseng has a certain curative effect on myocardial I/R injury. It can prevent and treat myocardial I/R injury in several ways. When ginseng exerts its effects, should be based on the theory of traditional Chinese medicine and with the help of modern medicine; the clinical efficacy of P. ginseng in preventing and treating myocardial I/R injury can be improved.


Assuntos
Ginsenosídeos , Traumatismo por Reperfusão Miocárdica , Panax , Fitosteróis , Cálcio , Citocinas , Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Oxigênio , Polissacarídeos
13.
Biomed Pharmacother ; 158: 114096, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36502752

RESUMO

BACKGROUND: Respiratory diseases mainly include asthma, influenza, pneumonia, chronic obstructive pulmonary disease, pulmonary hypertension, lung fibrosis, and lung cancer. Given their high prevalence and poor prognosis, the prevention and treatment of respiratory diseases are increasingly essential. In particular, the development for the novel strategies of drug treatment has been a hot topic in the research field. Ginsenosides are the major component of Panax ginseng C. A. Meyer (ginseng), a food homology and well-known medicinal herb. In this review, we summarize the current therapeutic effects and molecular mechanisms of ginsenosides in respiratory diseases. METHODS: The reviewed studies were retrieved via a thorough analysis of numerous articles using electronic search tools including Sci-Finder, ScienceDirect, PubMed, and Web of Science. The following keywords were used for the online search: ginsenosides, asthma, influenza, pneumonia, chronic obstructive pulmonary disease (COPD), pulmonary hypertension (PH), lung fibrosis, lung cancer, and clinical trials. We summarized the findings and the conclusions from 176 manuscripts on ginsenosides, including research articles and reviews. RESULTS: Ginsenosides Rb1, Rg1, Rg3, Rh2, and CK, which are the most commonly reported ginsenosides for treating of respiratory diseases, and other ginsenosides such as Rh1, Rk1, Rg5, Rd and Re, all primarily reduce pneumonia, fibrosis, and inhibit tumor progression by targeting NF-κB, TGF-ß/Smad, PI3K/AKT/mTOR, and JNK pathways, thereby ameliorating respiratory diseases. CONCLUSION: This review provides novel ideas and important aspects for the future research of ginsenosides for treating respiratory diseases.


Assuntos
Asma , Ginsenosídeos , Hipertensão Pulmonar , Influenza Humana , Neoplasias Pulmonares , Panax , Doença Pulmonar Obstrutiva Crônica , Fibrose Pulmonar , Humanos , Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , Ginsenosídeos/química , Fibrose Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/tratamento farmacológico , Influenza Humana/tratamento farmacológico , Fosfatidilinositol 3-Quinases , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Asma/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Panax/química
14.
Front Pharmacol ; 13: 909363, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35928281

RESUMO

Panax ginseng C.A. Mey. has a history of more than 4000 years and is widely used in Asian countries. Modern pharmacological studies have proved that ginsenosides and their compounds have a variety of significant biological activities on specific diseases, including neurodegenerative diseases, certain types of cancer, gastrointestinal disease, and metabolic diseases, in which most of the interest has focused on ginsenoside Rd. The evidentiary basis showed that ginsenoside Rd ameliorates ischemic stroke, nerve injury, cancer, and other diseases involved in apoptosis, inflammation, oxidative stress, mitochondrial damage, and autophagy. In this review, we summarized available reports on the molecular biological mechanisms of ginsenoside Rd in neurological diseases, cancer, metabolic diseases, and other diseases. We also discussed the main biotransformation pathways of ginsenoside Rd obtained by fermentation.

15.
Cell Tissue Res ; 390(2): 293-313, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36044078

RESUMO

Spermatogenesis is a finely regulated process of germ cell proliferation and differentiation that leads to the production of sperm in seminiferous tubules. Although the mammalian target of rapamycin (mTOR) signaling pathway is crucial for spermatogenesis in mammals, its functions and molecular mechanisms in spermatogenesis remain largely unknown in nonmammalian species, particularly in Crustacea. In this study, we first identified es-Raptor (the core component of mTOR complex 1) and es-Rictor (the core component of mTOR complex 2) from the testis of Eriocheir sinensis. Dynamic localization of es-Raptor and es-Rictor implied that these proteins were indispensable for the spermatogenesis of E. sinensis. Furthermore, es-Raptor and es-Rictor knockdown results showed that the mature sperm failed to be released, causing almost empty lumens in the testis. We investigated the reasons for these effects and found that the actin-based cytoskeleton was disrupted in the knockdown groups. In addition, the integrity of the testis barrier (similar to the blood-testis barrier in mammals) was impaired and affected the expression of cell junction proteins. Further study revealed that es-Raptor and es-Rictor may regulate spermatogenesis via both mTORC1- and mTORC2-dependent mechanisms that involve es-rpS6 and es-Akt/es-PKC, respectively. Moreover, to explore the testis barrier in E. sinensis, we established a cadmium chloride (CdCl2)-induced testis barrier damage model as a positive control. Morphological and immunofluorescence results were similar to those of the es-Raptor and es-Rictor knockdown groups. Altogether, es-Raptor and es-Rictor were important for spermatogenesis through maintenance of the actin filament network and cell junctions in E. sinensis.


Assuntos
Braquiúros , Sêmen , Animais , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Espermatogênese/fisiologia , Citoesqueleto de Actina , Junções Intercelulares , Proteínas/farmacologia , Mamíferos
16.
Front Cell Infect Microbiol ; 12: 853981, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35548468

RESUMO

Panax ginseng, as the king of Chinese herb, has significant therapeutic effects on obesity, type 2 diabetes mellitus, fatty liver disease, colitis, diarrhea, and many other diseases. This review systematically summarized recent findings, which show that ginseng plays its role by regulating gut microbiota diversity, and gut microbiota could also regulate the transformation of ginsenosides. We conclude the characteristics of ginseng in regulating gut microbiota, as the potential targets to prevent and treat metabolic diseases, colitis, neurological diseases, cancer, and other diseases. Ginseng treatment can increase some probiotics such as Bifidobacterium, Bacteroides, Verrucomicrobia, Akkermansia, and reduce pathogenic bacteria such as Deferribacters, Lactobacillus, Helicobacter against various diseases. Meanwhile, Bacteroides, Eubacterium, and Bifidobacterium were found to be the key bacteria for ginsenoside transformation in vivo. Overall, ginseng can regulate gut microbiome diversity, further affect the synthesis of secondary metabolites, as well as promote the transformation of ginsenosides for improving the absorptivity of ginsenosides. This review can provide better insight into the interaction of ginseng with gut microbiota in multiple disorders and ginsenoside transformation.


Assuntos
Colite , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Ginsenosídeos , Panax , Bactérias , Bifidobacterium , Humanos
17.
J Food Sci ; 87(6): 2484-2503, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35502672

RESUMO

Wild jujube seed protein (WJSP) as one kind of functional food material has attracted much attention due to its highly nutritive and medicinal value in anti-inflammatory and improving immunomodulatory ability. However, owing to its large molecular weight and complex structure, biological activities of WJSP were greatly limited and cannot be fully utilized by the human body. Therefore, how to improve the bioavailability of WJSP and develop promising WJSP nutritious materials is a great challenge. In this work, wild jujube seed protein hydrolysates (WJSPHs) were prepared from WJSP via enzymatic hydrolysis method, and their physico-chemical properties, antioxidant activity, and angiotensin converting enzyme (ACE) inhibitory activity in vitro have been investigated for the first time. SDS-PAGE electrophoresis and size-exclusion chromatographic results indicate that WJSPHs have lower molecular weight distribution (< 5,000 Da) than WJSP. Circular dichroism (CD) spectroscopy and Fourier transform infrared spectroscopy (FTIR) results illustrated that random coil is the main secondary structure of WJSPHs. Antioxidant experiments indicate that WJSPHs exhibit high radicals-scavenging ability of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals (94.60%), 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulfonate) (ABTS+ ) radicals (90.84%), superoxide radicals (44.77%), and hydroxyl radicals (47.77%). In vitro, WJSPHs can significantly decrease the accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA), and increase the activity of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in HepG2 cells. Moreover, ACE activity was found that can be significantly inhibited by WJSPHs (73.02%). Therefore, all previously mentioned results suggest that WJSPHs may be a promising antioxidant food to prevent oxidative-related diseases in future. PRACTICAL APPLICATION: This study shows that WJSPHs exhibit high antioxidant activity and ACE inhibitory activity in vitro, which provide potential application value as antioxidant peptides to prevent oxidative-related diseases.


Assuntos
Antioxidantes , Hidrolisados de Proteína , Ziziphus , Inibidores da Enzima Conversora de Angiotensina/química , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Peptidil Dipeptidase A/química , Hidrolisados de Proteína/química , Hidrolisados de Proteína/farmacologia , Sementes/química , Ziziphus/química
18.
Biomed Res Int ; 2022: 8752325, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35178456

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a progressive disease with high mortality and poor prognosis. The prognostic signatures related to conventional therapy response remain limited. The Wenfei Buqi Tongluo (WBT) formula, a traditional Chinese medicine (TCM) formula, has been widely utilized to treat respiratory diseases in China, which is particularly effective in promoting inflammatory absorption. In this study, we aim to explore the mechanism of the WBT formula in the inhibition of inflammatory response during IPF, based on network pharmacology and in vivo experiments. METHODS: Network pharmacology was applied to predict the changes of biological processes and potential pathways for the WBT formula against IPF. Histopathological changes, inflammatory factors (IL-6, IL-1ß, and TNF-α), and the proteins of the TLR4/MyD88/NF-κB pathway in bleomycin- (BLM-) induced mice model were examined by hematoxylin-eosin (H&E), Masson or immunohistochemistry staining, Western blot, and enzyme-linked immunosorbent assay analysis. RESULTS: A total of 163 possible components and 167 potential targets between the WBT formula and IPF were obtained. The enrichments of network pharmacology showed that inflammation response, TNF, and NF-κB pathways were involved in the treatment of WBT against IPF. The in vivo experiments indicated that the WBT formula could ameliorate inflammatory exudation and collagen deposition at a histopathology level in the BLM-induced mice model. The levels of IL-6, IL-1ß, and TNF-α were reduced after the WBT formula treatment. Moreover, the expressions of phosphorylated-NF-κB p65, TLR4, and MyD88 were significantly downregulated by the WBT formula, compared with the BLM-induced group. CONCLUSION: These results indicated that the WBT formula can suppress BLM-induced IPF in a mouse model by inhibiting the inflammation via the TLR4/MyD88/NF-κB pathway. This study provides a new insight into the molecular mechanisms of the WBT formula in the application at the clinic.


Assuntos
Fibrose Pulmonar Idiopática , NF-kappa B , Animais , Medicamentos de Ervas Chinesas , Fibrose Pulmonar Idiopática/tratamento farmacológico , Inflamação/tratamento farmacológico , Interleucina-6/metabolismo , Camundongos , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
19.
Molecules ; 26(16)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34443587

RESUMO

Panax spp. (Araliaceae family) are widely used medicinal plants and they mainly include Panax ginseng C.A. Meyer, Panax quinquefolium L. (American ginseng), and Panax notoginseng (notoginseng). Polysaccharides are the main active ingredients in these plants and have demonstrated diverse pharmacological functions, but comparisons of isolation methods, structural features, and bioactivities of these polysaccharides have not yet been reported. This review summarizes recent advances associated with 112 polysaccharides from ginseng, 25 polysaccharides from American ginseng, and 36 polysaccharides from notoginseng and it compares the differences in extraction, purification, structural features, and bioactivities. Most studies focus on ginseng polysaccharides and comparisons are typically made with the polysaccharides from American ginseng and notoginseng. For the extraction, purification, and structural analysis, the processes are similar for the polysaccharides from the three Panax species. Previous studies determined that 55 polysaccharides from ginseng, 18 polysaccharides from American ginseng, and 9 polysaccharides from notoginseng exhibited anti-tumor activity, immunoregulatory effects, anti-oxidant activity, and other pharmacological functions, which are mediated by multiple signaling pathways, including mitogen-activated protein kinase, nuclear factor kappa B, or redox balance pathways. This review can provide new insights into the similarities and differences among the polysaccharides from the three Panax species, which can facilitate and guide further studies to explore the medicinal properties of the Araliaceae family used in traditional Chinese medicine.


Assuntos
Fracionamento Químico/métodos , Panax/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Animais , Humanos , Polissacarídeos/isolamento & purificação
20.
Front Pharmacol ; 12: 688490, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34149431

RESUMO

Alzheimer's disease (AD), a neurodegenerative disorder, is a major health concern in the increasingly aged population worldwide. Currently, no clinically effective drug can halt the progression of AD. Panax ginseng C.A. Mey. is a well-known medicinal plant that contains ginsenosides, gintonin, and other components and has neuroprotective effects against a series of pathological cascades in AD, including beta-amyloid formation, neuroinflammation, oxidative stress, and mitochondrial dysfunction. In this review, we summarize the effects and mechanisms of these major components and formulas containing P. ginseng in neuronal cells and animal models. Moreover, clinical findings regarding the prevention and treatment of AD with P. ginseng or its formulas are discussed. This review can provide new insights into the possible use of ginseng in the prevention and treatment of AD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...